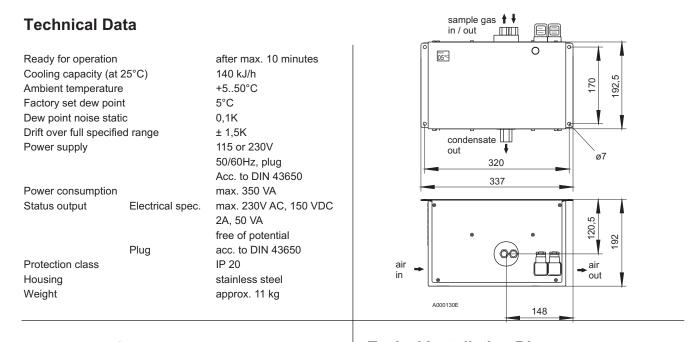


Sample Gas Cooler PKE 42

Accurate measurement of gases requires samples with stable dew points even under harsh ambient conditions.

The PKE 42 cooling system consists of semiconductor Peltier cooling elements with an aluminum cooling block. Fitted into the block is a removable, high-efficiency heat exchanger made of stainless steel, DURAN-glass or PVDF with 1 or 2 gas paths.


The unit maintains a constant outlet dew point of 40 $^{\circ}$ F with an electronic controller. The temperature of the cooling block is shown on an LED-display. The status is indicated by a flashing LED which shows high or low temperature alarms and operates together with relay to halt the flow of sample gas in fail-safe mode.

The relay maybe used to control the sample gas pump when the cooler reaches the desired temperature range.

Condensate is removed either by peristaltic pumps, by automatic condensate drains, or condensate vessels.

- Compact design
- Quick installation
- No maintenance required
- Low noise
- Efficient heat exchangers made of stainless steel, Duran-glass or PVDF
- Nominal cooling capacity 140 kJ/h
- Dew point stability 0.1°C
- Status display and output
- Cooling temperature display
- Heat exchanger with 1 or 2 gas paths

Performance Data Typical Installation Diagram: Testgas/ calibration gas 200 180 160 140 120 ŧ 8 **Cooling cap. in kJ/h** 180 170 180 100 80 90 80 100 100 0 0 0 0 PKE 42 w ith DTS (5) 6 $\overline{7}$ 234 9 10 Limit for TV-SS 1 Sample probe 7 Moisture detector 2 Sample tube 8 Fine filter 3 3 way valve Sample gas pump Flow meter 9 4 10 Analyser 5 10 15 20 25 30 35 40 45 50 5 Sample gas cooler For models and specs of EGK-1/2 Ambient temperature / °C A000131E 6 Automatic condensate components see individual drain or perist. pump data sheets.

Heat Exchanger

The energy content of the sample gas and, as a result, the required cooling capacity of the gas cooler is determined by 3 parameters: gas temperature ϑ_{g} , dewpoint τ_{e} (moisture content) and flow v. The outlet dew point rises with increasing energy content (heat) of the gas. The required cooling capacity is determined by the maximum acceptable level of the outlet dew point.

The following table shows cooler performance assuming the following conditions: $\tau_e=50^{\circ}$ C and $\vartheta_G=70^{\circ}$ C. Indicated is the v_{max} in NI/h cooled air (i.e. after the moisture has condensated). If the actual values stay below the parameters τ_e and ϑ_G , v_{max} can be increased. For example (TG), instead of $\tau_e=50^{\circ}$ C, $\vartheta_G=70^{\circ}$ C and v=345 l/h the values $\tau_e=40^{\circ}$ C, $\vartheta_G=70^{\circ}$ C and a maximum flow rate of v=425 l/h could be achieved. **Please contact one of Buhler's application specialists for assistance and further information.**

Heat Exchanger	TS	TG	TV-SS	DTS	DTG	DTV ³⁾
Flow rate v _{max} ¹⁾	500 l/h	400 l/h	235 l/h	2 x 250 l/h	2 x 200 l/h	2 x 160 l/hl
Inlet dewpoint $\tau_{e,max}^{(1)}$	80 °C	80 °C	65 °C	80 °C	65 °C	65 °C
Gas inlet temperature. $\vartheta_{\rm G,max}$ 1)	180 °C	140 °C	140 °C	180 °C	140 °C	140°C
Max. cooling capacity Q _{max}	450 kJ/h	230 kJ/h	120 kJ/h	450 kJ/h	230 kJ/h	185 kJ/h
Gas pressure p _{max}	160 bar	3 bar	3 bar	25 bar	3 bar	2 bar
Pressure drop ∆p (v=150 l/h)	8 mbar	8 mbar	8 mbar	each 5 mbar	each 5 mbar	each 15 mbar
Dead volume V _{tot}	69 ml	48 ml	129 ml	28 / 25 ml	28 / 25 ml	21 / 21 ml
Sample gas connections	G 1/4" i 2)	GL 14	DN 4/6	tube 6 mm	GL 14	DN 4/6
Condensate out connections	G 3/8" i 2)	GL 25	G 3/8" i	tube 10 mm	GL 18	DN 4/6
¹⁾ max. cooling capacity of the cooler must be considered ²⁾ NPT-threads upon request		³⁾ Con only be used with peristaltic pumps				

Please indicate with order		Accessories		
Basic units		45 10 008	Automatic condensate drain AK 5.2	
44 70 099	PKE 42, 230V, 50/60Hz	44 10 005	Condensate vessel GL1, 0,4I	
44 70 199	PKE 42, 115V, 50/60Hz	45 10 122	Peristaltic pump 0.3 l/h, 230V,	
Heat exchangers			separate mounting	
4510023	TS, stainless steel 1.4571	45 10 222	Peristaltic pump 0.3 l/h, 115V,	
4510013	TG, Duran-glass		separate mounting	
4501004	TV, PVDF	44 70 799	Peristaltic pump 0.3 l/h, 230V, mounted	
4501026	DTS, stainless steel 1.4571	44 70 899	Peristaltic pump 0.3 l/h, 115V, mounted	
4501027	DTG, Duran-glass		we receive the right to encode an effection	
4501028	DTV, PVDF		we reserve the right to amend specification	